3.619 \(\int \frac {(d+e x^2)^2}{a+b \sinh ^{-1}(c x)} \, dx\)

Optimal. Leaf size=388 \[ \frac {e^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{8 b c^5}-\frac {3 e^2 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{16 b c^5}+\frac {e^2 \cosh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{16 b c^5}-\frac {e^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{8 b c^5}+\frac {3 e^2 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{16 b c^5}-\frac {e^2 \sinh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{16 b c^5}-\frac {d e \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{2 b c^3}+\frac {d e \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{2 b c^3}+\frac {d e \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{2 b c^3}-\frac {d e \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{2 b c^3}+\frac {d^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}-\frac {d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c} \]

[Out]

d^2*Chi((a+b*arcsinh(c*x))/b)*cosh(a/b)/b/c-1/2*d*e*Chi((a+b*arcsinh(c*x))/b)*cosh(a/b)/b/c^3+1/8*e^2*Chi((a+b
*arcsinh(c*x))/b)*cosh(a/b)/b/c^5+1/2*d*e*Chi(3*(a+b*arcsinh(c*x))/b)*cosh(3*a/b)/b/c^3-3/16*e^2*Chi(3*(a+b*ar
csinh(c*x))/b)*cosh(3*a/b)/b/c^5+1/16*e^2*Chi(5*(a+b*arcsinh(c*x))/b)*cosh(5*a/b)/b/c^5-d^2*Shi((a+b*arcsinh(c
*x))/b)*sinh(a/b)/b/c+1/2*d*e*Shi((a+b*arcsinh(c*x))/b)*sinh(a/b)/b/c^3-1/8*e^2*Shi((a+b*arcsinh(c*x))/b)*sinh
(a/b)/b/c^5-1/2*d*e*Shi(3*(a+b*arcsinh(c*x))/b)*sinh(3*a/b)/b/c^3+3/16*e^2*Shi(3*(a+b*arcsinh(c*x))/b)*sinh(3*
a/b)/b/c^5-1/16*e^2*Shi(5*(a+b*arcsinh(c*x))/b)*sinh(5*a/b)/b/c^5

________________________________________________________________________________________

Rubi [A]  time = 0.79, antiderivative size = 380, normalized size of antiderivative = 0.98, number of steps used = 27, number of rules used = 7, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {5706, 5657, 3303, 3298, 3301, 5669, 5448} \[ -\frac {d e \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{2 b c^3}+\frac {d e \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{2 b c^3}+\frac {e^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{8 b c^5}-\frac {3 e^2 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{16 b c^5}+\frac {e^2 \cosh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 a}{b}+5 \sinh ^{-1}(c x)\right )}{16 b c^5}+\frac {d e \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{2 b c^3}-\frac {d e \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{2 b c^3}-\frac {e^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{8 b c^5}+\frac {3 e^2 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{16 b c^5}-\frac {e^2 \sinh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 a}{b}+5 \sinh ^{-1}(c x)\right )}{16 b c^5}+\frac {d^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}-\frac {d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^2/(a + b*ArcSinh[c*x]),x]

[Out]

-(d*e*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]])/(2*b*c^3) + (e^2*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]])
/(8*b*c^5) + (d*e*Cosh[(3*a)/b]*CoshIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(2*b*c^3) - (3*e^2*Cosh[(3*a)/b]*CoshI
ntegral[(3*a)/b + 3*ArcSinh[c*x]])/(16*b*c^5) + (e^2*Cosh[(5*a)/b]*CoshIntegral[(5*a)/b + 5*ArcSinh[c*x]])/(16
*b*c^5) + (d^2*Cosh[a/b]*CoshIntegral[(a + b*ArcSinh[c*x])/b])/(b*c) + (d*e*Sinh[a/b]*SinhIntegral[a/b + ArcSi
nh[c*x]])/(2*b*c^3) - (e^2*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(8*b*c^5) - (d*e*Sinh[(3*a)/b]*SinhInte
gral[(3*a)/b + 3*ArcSinh[c*x]])/(2*b*c^3) + (3*e^2*Sinh[(3*a)/b]*SinhIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(16*b
*c^5) - (e^2*Sinh[(5*a)/b]*SinhIntegral[(5*a)/b + 5*ArcSinh[c*x]])/(16*b*c^5) - (d^2*Sinh[a/b]*SinhIntegral[(a
 + b*ArcSinh[c*x])/b])/(b*c)

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5657

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cosh[a/b - x/b], x], x,
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 5669

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Sinh[x]^m*Cosh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5706

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcSinh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[e, c^2*d] && IntegerQ[p] &&
 (p > 0 || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^2}{a+b \sinh ^{-1}(c x)} \, dx &=\int \left (\frac {d^2}{a+b \sinh ^{-1}(c x)}+\frac {2 d e x^2}{a+b \sinh ^{-1}(c x)}+\frac {e^2 x^4}{a+b \sinh ^{-1}(c x)}\right ) \, dx\\ &=d^2 \int \frac {1}{a+b \sinh ^{-1}(c x)} \, dx+(2 d e) \int \frac {x^2}{a+b \sinh ^{-1}(c x)} \, dx+e^2 \int \frac {x^4}{a+b \sinh ^{-1}(c x)} \, dx\\ &=\frac {d^2 \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \sinh ^{-1}(c x)\right )}{b c}+\frac {(2 d e) \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh ^2(x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^3}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh ^4(x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^5}\\ &=\frac {(2 d e) \operatorname {Subst}\left (\int \left (-\frac {\cosh (x)}{4 (a+b x)}+\frac {\cosh (3 x)}{4 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^3}+\frac {e^2 \operatorname {Subst}\left (\int \left (\frac {\cosh (x)}{8 (a+b x)}-\frac {3 \cosh (3 x)}{16 (a+b x)}+\frac {\cosh (5 x)}{16 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^5}+\frac {\left (d^2 \cosh \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \sinh ^{-1}(c x)\right )}{b c}-\frac {\left (d^2 \sinh \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \sinh ^{-1}(c x)\right )}{b c}\\ &=\frac {d^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}-\frac {d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}-\frac {(d e) \operatorname {Subst}\left (\int \frac {\cosh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}+\frac {(d e) \operatorname {Subst}\left (\int \frac {\cosh (3 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\cosh (5 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\cosh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{8 c^5}-\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {\cosh (3 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}\\ &=\frac {d^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}-\frac {d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}-\frac {\left (d e \cosh \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}+\frac {\left (e^2 \cosh \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{8 c^5}+\frac {\left (d e \cosh \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}-\frac {\left (3 e^2 \cosh \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}+\frac {\left (e^2 \cosh \left (\frac {5 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {5 a}{b}+5 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}+\frac {\left (d e \sinh \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}-\frac {\left (e^2 \sinh \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{8 c^5}-\frac {\left (d e \sinh \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}+\frac {\left (3 e^2 \sinh \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}-\frac {\left (e^2 \sinh \left (\frac {5 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {5 a}{b}+5 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}\\ &=-\frac {d e \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{2 b c^3}+\frac {e^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{8 b c^5}+\frac {d e \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{2 b c^3}-\frac {3 e^2 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{16 b c^5}+\frac {e^2 \cosh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 a}{b}+5 \sinh ^{-1}(c x)\right )}{16 b c^5}+\frac {d^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}+\frac {d e \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{2 b c^3}-\frac {e^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{8 b c^5}-\frac {d e \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{2 b c^3}+\frac {3 e^2 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 a}{b}+3 \sinh ^{-1}(c x)\right )}{16 b c^5}-\frac {e^2 \sinh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 a}{b}+5 \sinh ^{-1}(c x)\right )}{16 b c^5}-\frac {d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.55, size = 253, normalized size = 0.65 \[ \frac {-16 c^4 d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )+e \cosh \left (\frac {3 a}{b}\right ) \left (8 c^2 d-3 e\right ) \text {Chi}\left (3 \left (\frac {a}{b}+\sinh ^{-1}(c x)\right )\right )+8 c^2 d e \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )-8 c^2 d e \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\sinh ^{-1}(c x)\right )\right )+2 \cosh \left (\frac {a}{b}\right ) \left (8 c^4 d^2-4 c^2 d e+e^2\right ) \text {Chi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )+e^2 \cosh \left (\frac {5 a}{b}\right ) \text {Chi}\left (5 \left (\frac {a}{b}+\sinh ^{-1}(c x)\right )\right )-2 e^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )+3 e^2 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\sinh ^{-1}(c x)\right )\right )-e^2 \sinh \left (\frac {5 a}{b}\right ) \text {Shi}\left (5 \left (\frac {a}{b}+\sinh ^{-1}(c x)\right )\right )}{16 b c^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^2/(a + b*ArcSinh[c*x]),x]

[Out]

(2*(8*c^4*d^2 - 4*c^2*d*e + e^2)*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]] + (8*c^2*d - 3*e)*e*Cosh[(3*a)/b]*
CoshIntegral[3*(a/b + ArcSinh[c*x])] + e^2*Cosh[(5*a)/b]*CoshIntegral[5*(a/b + ArcSinh[c*x])] - 16*c^4*d^2*Sin
h[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] + 8*c^2*d*e*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] - 2*e^2*Sinh[a/
b]*SinhIntegral[a/b + ArcSinh[c*x]] - 8*c^2*d*e*Sinh[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c*x])] + 3*e^2*Sin
h[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c*x])] - e^2*Sinh[(5*a)/b]*SinhIntegral[5*(a/b + ArcSinh[c*x])])/(16*
b*c^5)

________________________________________________________________________________________

fricas [F]  time = 0.65, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}{b \operatorname {arsinh}\left (c x\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral((e^2*x^4 + 2*d*e*x^2 + d^2)/(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{2}}{b \operatorname {arsinh}\left (c x\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^2/(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.29, size = 380, normalized size = 0.98 \[ \frac {-\frac {e^{2} {\mathrm e}^{-\frac {5 a}{b}} \Ei \left (1, -5 \arcsinh \left (c x \right )-\frac {5 a}{b}\right )}{32 c^{4} b}-\frac {e^{2} {\mathrm e}^{\frac {5 a}{b}} \Ei \left (1, 5 \arcsinh \left (c x \right )+\frac {5 a}{b}\right )}{32 c^{4} b}-\frac {{\mathrm e}^{\frac {a}{b}} \Ei \left (1, \arcsinh \left (c x \right )+\frac {a}{b}\right ) d^{2}}{2 b}+\frac {{\mathrm e}^{\frac {a}{b}} \Ei \left (1, \arcsinh \left (c x \right )+\frac {a}{b}\right ) d e}{4 c^{2} b}-\frac {{\mathrm e}^{\frac {a}{b}} \Ei \left (1, \arcsinh \left (c x \right )+\frac {a}{b}\right ) e^{2}}{16 c^{4} b}-\frac {{\mathrm e}^{-\frac {a}{b}} \Ei \left (1, -\arcsinh \left (c x \right )-\frac {a}{b}\right ) d^{2}}{2 b}+\frac {{\mathrm e}^{-\frac {a}{b}} \Ei \left (1, -\arcsinh \left (c x \right )-\frac {a}{b}\right ) d e}{4 c^{2} b}-\frac {{\mathrm e}^{-\frac {a}{b}} \Ei \left (1, -\arcsinh \left (c x \right )-\frac {a}{b}\right ) e^{2}}{16 c^{4} b}-\frac {e \,{\mathrm e}^{\frac {3 a}{b}} \Ei \left (1, 3 \arcsinh \left (c x \right )+\frac {3 a}{b}\right ) d}{4 c^{2} b}+\frac {3 e^{2} {\mathrm e}^{\frac {3 a}{b}} \Ei \left (1, 3 \arcsinh \left (c x \right )+\frac {3 a}{b}\right )}{32 c^{4} b}-\frac {e \,{\mathrm e}^{-\frac {3 a}{b}} \Ei \left (1, -3 \arcsinh \left (c x \right )-\frac {3 a}{b}\right ) d}{4 c^{2} b}+\frac {3 e^{2} {\mathrm e}^{-\frac {3 a}{b}} \Ei \left (1, -3 \arcsinh \left (c x \right )-\frac {3 a}{b}\right )}{32 c^{4} b}}{c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2/(a+b*arcsinh(c*x)),x)

[Out]

1/c*(-1/32/c^4*e^2/b*exp(-5*a/b)*Ei(1,-5*arcsinh(c*x)-5*a/b)-1/32/c^4*e^2/b*exp(5*a/b)*Ei(1,5*arcsinh(c*x)+5*a
/b)-1/2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)*d^2+1/4/c^2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)*d*e-1/16/c^4/b*exp(a/b
)*Ei(1,arcsinh(c*x)+a/b)*e^2-1/2/b*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)*d^2+1/4/c^2/b*exp(-a/b)*Ei(1,-arcsinh(c*x
)-a/b)*d*e-1/16/c^4/b*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)*e^2-1/4/c^2*e/b*exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)*
d+3/32/c^4*e^2/b*exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)-1/4/c^2*e/b*exp(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b)*d+3
/32/c^4*e^2/b*exp(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{2}}{b \operatorname {arsinh}\left (c x\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^2/(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (e\,x^2+d\right )}^2}{a+b\,\mathrm {asinh}\left (c\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^2/(a + b*asinh(c*x)),x)

[Out]

int((d + e*x^2)^2/(a + b*asinh(c*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x^{2}\right )^{2}}{a + b \operatorname {asinh}{\left (c x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2/(a+b*asinh(c*x)),x)

[Out]

Integral((d + e*x**2)**2/(a + b*asinh(c*x)), x)

________________________________________________________________________________________